
6

BAB II

LANDASAN TEORI

2.1. Tata Laksana Laboratorium Komputer

Tata Laksana atau Ketatalaksanaan adalah sistem kerja dalam

rangka penyelesaian suatu pekerjaan yang didalamnya memuat tata

kerja dan prosedur kerja. Direktorat Jenderal Pendidikan Menengah

Kementerian Pendidikan dan Kebudayaan telah mengeluarkan panduan

teknis yang mencakup empat kegiatan utama yaitu: perencanaan,

pengelolaan, perawatan dan keberlanjutan. Dalam setiap laboratorium

terdiri atas koordinator laboratorium, kepala laboratorium, teknisi, dan

laboran yang masing-masing mempunyai tugas yang besar dan

tanggungjawab yang spesifik.

Mengingat pentingnya peranan laboratorium komputer dalam

akselerasi proses pembelajaran, maka perlu dilakukan upaya manajemen

laboratorium komputer baik untuk mendukung peran dan fungsi

laboratorium secara optimal. Laboratorium komputer yang ideal,

setidaknya dilengkapi dengan berbagai alat dan bahan yang dapat

mendukung kegiatan laboratorium. Peralatan utama yang harus dimiliki

oleh lab komputer adalah komputer, meja komputer, LCD Proyektor, layar

proyektor dan papan tulis (whiteboard).

http://www.wikiapbn.com/artikel/Tata_kerja
http://www.wikiapbn.com/artikel/Tata_kerja
http://www.wikiapbn.com/wiki/index.php?title=Prosedur_kerja&action=edit&redlink=1

7

Di samping peralatan utama, lab komputer juga semestinya didukung

oleh adanya jaringan internet baik yang berbasis kabel maupun nir kabel,

sistem jaringan Local Area Networking (LAN), Operation System (OS)

legal, aplikasi office legal, anti virus dan sebagainya. (Sutanta, 2005)

2.2. Web Service

Web service adalah komponen perangkat lunak disimpan pada suatu

komputer yang dapat diakses oleh aplikasi (atau komponen perangkat

lunak lainnya) di komputer lain melalui jaringan. Web service

berkomunikasi menggunakan teknologi seperti XML, JSON, dan HTTP.

(Deitel,2012)

Web service memiliki layanan terbuka untuk kepentingan integrasi

data dan kolaborasi informasi yang bisa diakses melalui internet oleh

berbagai pihak menggunakan teknologi yang dimiliki oleh masing-masing

pengguna. (Budi, 2008)

Beberapa alasan mengapa digunakannya web service adalah

sebagai berikut:

1. Web service dapat digunakan untuk mentransformasikan satu atau

beberapa bisnis logik atau class dan objek yang terpisah dalam satu

ruang lingkup yang menjadi satu, sehingga tingkat keamanan dapat

ditangani dengan baik.

2. Web service memiliki kemudahan dalam proses deployment, karena

tidak memerlukan registrasi khusus ke dalam suatu sistem operasi.

8

Web service cukup di upload ke web server dan siap diakses oleh

pihak-pihak yang telah diberikan otorisasi.

3. Web service berjalan di port 80 yang merupakan protokol standar

HTTP, dengan demikian web service tidak memerlukan konfigurasi

khusus di sisi firewall.

2.3. Android

Android adalah sebuah sistem operasi untuk perangkat mobile

berbasis linux yang mencakup sistem operasi, middleware dan aplikasi.

Android menyediakan platform terbuka bagi para pengembang untuk

menciptakan aplikasi mereka. Awalnya, Google Inc. membeli Android Inc.

yang merupakan pendatang baru yang membuat peranti lunak untuk

ponsel/smartphone. Kemudian untuk mengembangkan android,

dibentuklah Open Handset Alliance, konsorsium dari 34 perusahaan

peranti keras, peranti lunak, dan telekomunikasi, termasuk Google, HTC,

Intel, Motorola, Qualcomm, T-Mobile, dan Nvidia. (Safaat, 2014)

 Aplikasi Android ditulis dalam bahasa pemrograman java. Kode java

dikompilasi bersama dengan data file resource yang dibutuhkan oleh

aplikasi, dimana prosesnya dipackage oleh tools yang disebut “apt tools”

ke dalam paket android sehingga menghasilkan file dengan ekstensi apk.

File apk itu yang disebut dengan aplikasi dan nantinya dapat diinstall di

perangkat mobile.

9

2.4. Java Servlet

Servlet adalah sebuah class dalam bahasa pemgrograman java yang

digunakan untuk meningkatkan kapabilitas dari server sebagai host dari

aplikasi yang diakses melalui request-response programming model

(diadaptasi dari tutorial J2EE). Servlet adalah sebuah class java yang

meng-implement interface servlet dan menerima request yang berasal

dari class java, web client, atau servlet lain yang membangkitkan

response. "Servlet" juga dipanggil sebagai HTTP Servlet. Hal ini

disebakan karena servlet biasanya digunakan dengan HTTP, akan tetap

servlet bukanlah merupakan salah satu spesifikasi spesifik dari protokol

client-server. (Deitel, 2012)

Servlet menunjukkan komunikasi antara client dan server melalui

protokol HTTP. Client mengirimkan permintaan HTTP ke server. Servlet

container menerima permintaan dan mengarahkan untuk diproses oleh

servlet yang sesuai. Servlet melakukan pengolahan, yang termasuk

berinteraksi dengan database atau komponen server lain, seperti servlet

atau JSP lainnya. Servlet mengembalikan hasilnya kepada client di form

dari HTML, XHTML atau XML dokumen untuk menampilkan di browser.

(Deitel, 2012)

10

Gambar 2.1. Arsitektur Servlet

2.5. iBATIS

iBATIS merupakan sebuah persintence framework yang

mengotomatisasi penjembatanan atau pemetaan (mapping) antara

database SQL dan objek-objek di dalam Java. (Djuandi, 2009)

Pada sebuah sistem aplikasi client-server dengan arsitektur three-tier

dikenal tiga buah lapisan (layer) yang disebut sebagai presentasion,

business logic, dan data.

Gambar 2.2 Arsitektur Three-Tier

11

Seiring dengan berkembangnya evolusi pemrograman dan

ditemukannya teknik-teknik yang baru yang berdasarkan pengalaman

diakui dapat meningkatkan efisiensi serta kemudahan maka

diperkenalkan sebuah lapisan persintence yang berada di antara business

logic dan data sehingga yang semula kedua lapisan itu langsung

berinteraksi maka sekarang tersedia jembatan di tengah-tengahnya yang

mengatur komunikasi keduanya secara tidak langsung.

Gambar 2.3. Arsitektur dengan Presintance Layer

Lapisan persistence terbagi menjadi tiga bagian dengan masing-

masing fungsi sebagai berikut :

1. Abstraction Layer, berfungsi sebagai antar muka bagi lapisan

persistence agar lapisan business logic dapat berinteraksi dengannya.

2. Persistence Framework, dalam hal ini adalah iBATIS itu sendiri. Pada

prakteknya iBATIS adalah sebuah library (file JAR) yang diasosiasikan

dengan sebuah project java sehingga class-class di dalam iBATIS

dapat digunakan.

12

3. Driver/Interface, adalah antar muka untuk mengakses database. Driver

database yang digunakan dalam pemrograman java adalah JDBC.

2.6. Model Pengembangan Perangkat Lunak

Model SDLC air terjur (waterfall) sering juga disebut model sekuensial

linier (sequential linear) atau alur hidup klasik (classic life cycle). Model air

terjun menyediakan pendekatan alur hidup perangkat lunak secara

sekuensial atau terurut dimulai dari analisis, desain, pengodean,

pengujian, dan tahap pendukung (support). (Shalahuddin dan Rosa, 2013)

 Pada hal ini Penulis menggunakan model waterfall dari proses SDLC

karena waterfall merupakan SDLC yang bersifat natural. Model waterfall

melakukan pendekatan secara sistematis dan urut mulai dari level

kebutuhan sistem lalu menuju ke tahap analysis, design, coding, testing,

dan maintenance.

Analisis
Kebutuhan

Perancangan
Sistem & Desain

Pengkodean

Pengujian

Pengoperasian
dan

Pemeliharaan

Gambar 2.4 Model Pengembangan Perangkat Lunak Waterfall

13

Berikut ini adalah tahapan dari model waterfall:

a. Analisis Kebutuhan

 Proses menganalisis dan pengumpulan kebutuhan sistem

yang sesuai dengan domain informasi tingkah laku, unjuk kerja, dan

antar muka (interface) yang diperlukan.

 Software merupakan bagian dari sebuah sistem yang besar,

maka pengerjaan dimulai dengan mengumpulkan kebutuhan bagi

semua elemen-elemen sistem kemudian mengalokasikan beberapa

subset dari kebutuhan-kebutuhan tersebut ke software. Hal ini sangat

penting ketika software harus berhubungan dengan elemen lain

seperti hardware, manusia dan basis data. Tahap ini meliputi

pengumpulan kebutuhan pada tingkat sistem dengan sedikit analisa

dan perancangan ditingkat atas.

b. Desain

 Dalam tahap ini penulis akan merancang desain dan model

aplikasi yang akan dirancangan untuk menerjemahkan kebutuhan

elemen sistem yang direpresentasikan ke dalam suatu software yang

diperkirakan kualitasnya sebelum dilakukan pengkodean.

c. Kode

Pengkodean (coding) merupakan proses menerjemahkan

desain ke dalam suatu bahasa yang bisa dimengerti oleh komputer

dengan menerjemahkan ke dalam bentuk yang dapat dibaca oleh

14

mesin jika perancangan dilaksanakan secara detail. Pengkodean

dapat dilakukan secara mekanis.

d. Pengujian

 Proses pengujian ini untuk menemukan kesalahan-kesalahan

dan memastikan bahwa input yang di buat akan memberikan hasil

aktual yang sesuai dengan hasil yang dibutuhkan.

e. Pengoperasian dan Pemeliharaan

Tahap ini merupakan tahapan akhir dalam model waterfall.

Perangkat lunak yang sudah jadi dijalankan serta dilakukan

pemeliharaan (maintenance). Pemeliharaan ini termasuk

memperbaiki kesalahan yang tidak ditemukan pada langkah

sebelumnya. Perbaikan Implementasi unit sistem dan peningkatan

jasa sistem sebagai kebutuhan baru. (Herlawati, 2011)

2.7. Unified Modeling Language (UML)

 Ada beberapa definisi dari Unified Modeling Language (UML) yang

pada dasarnya memiliki maksud yang sama. Unified Modeling Language

(UML) adalah bahasa grafis untuk mendokumentasikan,

menspesifikasikan, dan membangun sistem perangkat lunak. UML adalah

bahasa pemodelan untuk menspesifikasikan, memvisualisasikan,

membangun dan mendokumentasikan artifak-artifak sistem. (Bambang

Hariyanto, Ir., MT.,). Sedangkan menurut Whitten L. Jeffery Unified

Modeling Language (UML) merupakan satu kumpulan konvensi

pemodelan yang digunakan untuk menentukan atau menggambarkan

15

sebuah sistem software yang terkait dengan objek.Dengan menggunakan

UML kita dapat membuat model untuk semua jenis aplikasi software,

dimana aplikasi tersebut dapat berjalan pada hardware, sistem operasi

dan jaringan apapun, serta ditulis dalam bahasa pemrograman apapun.

Unified Modeling Language (UML) biasa digunakan untuk :

1. Menggambarkan batasan sistem dan fungsi-fungsi sistem secara

umum, dibuat dengan use case dan actor.

2. Menggambarkan kegiatan atau proses bisnis yang dilaksanakan

secara umum, dibuat dengan interaction diagrams.

3. Menggambarkan representasi struktur statik sebuah sistem dalam

bentuk class diagrams.

4. Membuat model behavior ” yang menggambarkan kebiasaan atau

sifat sebuah sistem ” dengan state transition diagrams.

5. Menyatakan arsitektur implementasi fisik menggunakan component

and development diagrams.

6. Menyampaikan atau memperluas fungsionalitas dengan stereotypes.

(Fowler, 2005)

 UML berfungsi sebagai jembatan dalam mengkomunikasikan

beberapa aspek dalam sistem melalui sejumlah elemen grafis yang bisa

dikombinasikan menjadi diagram.

 UML mempunyai banyak diagram yang dapat mengakomodasi

berbagai sudut pandang dari suatu perangkat lunak yang akan dibangun.

Diagram-diagram tersebut digunakan untuk :

16

1. Mengkomunikasikan ide,

2. Melahirkan ide-ide baru dan peluang-peluang baru,

3. Menguji ide dan membuat prediksi,

4. Memahami struktur dan relasi-relasinya.

 Seperti bahasa-bahasa lainnya, UML mendefinisikan notasi dan

syntax / semantik. Notasi UML merupakan sekumpulan bentuk khusus

untuk menggambarkan berbagai diagram piranti lunak. Setiap bentuk

memiliki makna tertentu, dan UML syntax mendefinisikan bagaimana

bentuk-bentuk tersebut dapat dikombinasikan. Notasi UML terutama

diturunkan dari 3 notasi yang telah ada sebelumnya, yaitu diantaranya

Grady Booch OOD (Object-Oriented Design), Jim Rumbaugh OMT

(Object Modeling Technique), dan Ivar Jacobson OOSE (Object-Oriented

Software Engineering). (Booch, 2005)

Terdapat berbagai diagram dalam merancang system

menggunakan UML, diantaranya adalah :

2.8.1. Use Case Diagram

Use Case Diagram secara grafis menggambarkan interaksi

antara sistem, sistem eksternal, dan pengguna. Dengan kata lain

Use Case Diagram secara grafis mendeskripsikan siapa yang

akan menggunakan sistem dan dalam cara apa pengguna (user)

mengharapkan interaksi dengan sistem itu. Use Case secara

naratif digunakan secara tekstual untuk menggambarkan urutan

langkah-langkah dari setiap interaksi.

17

Dalam pembicaraan tentang use case, pengguna biasanya

disebut sebagai aktor. Aktor adalah sebuah peran yang bisa

dimainkan oleh pengguna dalam interaksinya dengan sistem.

(Herlawati, 2011)

Tabel 2.1 Simbol Use Case Diagram

NO GAMBAR NAMA KETERANGAN

1

Actor

Menspesifikasikan himpuan

peran yang pengguna

mainkan ketika berinteraksi

dengan use case.

2

Use Case

Deskripsi berdasarkan

keperluan aktor, merupakan

“apa” yang dikerjakan sistem,

bukan “bagaimana” sistem

mengerjakannya. Use case

dibuat berdasarkan

keperluan actor.

3 Association

Apa yang menghubungkan

antara objek satu dengan

objek lainnya.

18

4
Association 1

arah

Mengindikasikan bila actor

berinteraksi secara pasif

dengan system anda

5 Generalization

Hubungan dimana objek

anak (descendent) berbagi

perilaku dan struktur data dari

objek yang ada di atasnya

objek induk (ancestor).

6 Dependency

Hubungan dimana

perubahan yang terjadi pada

suatu elemen mandiri

(independent) akan

mempengaruhi elemen yang

bergantung padanya elemen

yang tidak mandiri

(independent).

7

Include

Menspesifikasikan bahwa

use case sumber secara

eksplisit.

8

Extend

Menspesifikasikan bahwa

use case target memperluas

perilaku dari use case sumber

pada suatu titik yang

diberikan.

<< include >>

<< extend >>

19

9

System

Boundary

Menspesifikasikan paket

yang menampilkan sistem

secara terbatas.

10 Note

Elemen fisik yang eksis saat

aplikasi dijalankan dan

mencerminkan suatu sumber

daya komputasi

2.8.2. Class Diagram

Class adalah sebuah spesifikasi yang jika diinstansiasi

akan menghasilkan sebuah objek dan merupakan inti dari

pengembangan dan desain berorientasi objek. Class

menggambarkan keadaan (atribut/properti) suatu sistem,

sekaligus menawarkan layanan untuk memanipulasi keadaan

tersebut (metoda/fungsi).

Class diagram menggambarkan struktur dan deskripsi

class, package dan objek beserta hubungan satu sama lain

seperti containment, pewarisan, asosiasi, dan lain-lain.

(Herlawati, 2011)

20

Tabel 2.2 Simbol Class Diagram

NO GAMBAR NAMA KETERANGAN

1 Class

Himpunan dari objek-objek

yang berbagi atribut serta

operasi yang sama.

2
Directional

Assoctiation

Asosiasi ini menggambar

bahwa pesan atau urutan

kejadian terjadi dari hanya

salah satu kelas sedangkan

kelas yang lain pasif

3
Bidirectional

Assoctiation

Asosiasi ini terjadi ketika salah

satu kelas mengirimkan pesan

kepada kelas yang lain

kemudian kelas yang lain

mengirimkan pesan kepada

kelas yang mengirimnya

pesan.

4 Generalization

Hubungan dimana objek anak

(descendent) berbagi perilaku

dan struktur data dari objek

yang ada di atasnya objek

induk (ancestor).

5 Dependency
Relasi jenis ini menunjukkan

bahwa sebuah kelas mengacu

21

kepada kelas lainnya1. Oleh

sebab itu perubahan pada

kelas yang diacu akan sangat

berpengaruh pada kelas yang

mengacu

6

Agregation

Suatu bentuk relasi yang jauh

lebih kuat dari asosiasi.

Agregasi dapat diartikan

bahwa suatu kelas

merupakan bagian dari kelas

yang lain namun bersifat tidak

wajib.

7 Composite

Merupan ralasi yang paling

kuat dibandingkan asosiasi

dan agregasi. Komposisi

diartikan bahwa suatu kelas

merupana bagian yang wajib

dari kelas yang lain.

8 Realization

Operasi yang benar-benar

dilakukan oleh suatu objek.

Realisasi, bisa disebut juga

implementasi merupakan

suatu relasi yang

menunjukkan penerapan

22

terhadap suatu interface

kepada sebuah Class.

Class memiliki tiga area pokok, yaitu sebagai berikut.

1. Nama Class

 Nama Class digunakan untuk membedakan antara satu

kelas dan kelas yang lain. Nama class menggunakan huruf

besar di awal kalimatnya dan diletakkan di atas kotak. Bila

class mempunyai nama yang terdiri dari 2 suku kata

digabungkan tanpa spasi dengan huruf awal tipa suku kata

menggunakan huruf besar.

2. Attribute

 Attribute adalah property dari sebuah class. Attribute ini

melukiskan batas nilai yang mungkin ada pada obyek dari

class. Sebuah class mungkin mempunyai nol atau lebih

attribute. Secara konvensi, jika nama attribute terdiri dari atas

satu suku kata, maka ditulis dengan huruf kecil. Akan tetapi,

jika nama attribute mengandung lebih dari satu suku kata

pertama menggunakan huruf kecil dan awal suku kata

berikutnya menggunakan huruf besar.

3. Method (Operation)

 Operation adalah sesuatu yang bisa dilakukan oleh

sebuah class atau class yang lain dapat dilakukan untuk

sebuah class. Seperti halnya attribute , nama operation juga

23

menggunakan huruf kecil demua jika terdiri dari satu suku

kata. Akan tetapi, jika lebih dari satu suku kata pertama

menggunakan huruf kecil dan awal suku kata berikutnya

menggunakan huruf besar. (Munawar, 2005)

NamaClass

+ attributes2 : tipe_data

+ operation1(nama_Parameter) : tipe_Parameter
+ operation2(nama_Parameter) : tipe_Parameter

+ attributes1 : tipe_data

Gambar 2.5 Notasi Class di UML

 Pada relasi terdapat suatu penanda yang disebut multiplicity.

Multiplicity ini akan mengindikasikan berapa banyak obyek dari

suatu kelas terelasi ke obyek lain. Notasi UML untuk multiplicity

ini adalah sebagai berikut : (Herlawati, 2011)

Tabel 2.3 Tabel Multiplicity

24

2.8.3. Activity Diagram

Activity Diagram secara grafis digunakan untuk

menggambarkan rangkaian aliran aktivitas baik proses bisnis

maupun use case. Activity diagram dapat juga digunakan untuk

memodelkan action yang akan dilakukan saat sebuah operasi di

eksekusi, dan memodelkan hasil dari action tersebut. Activity

diagram mempunyai peran seperti halnya flowchart, akan tetapi

perbedaannya dengan flowchart adalah activity diagram bisa

mendukung perilaku paralel sedangkan flowchart tidak bisa.

(Herlawati, 2011)

Tabel 2.4 Simbol Activity Diagram

No Simbol Nama Keterangan

1.

Initial Activity
sebagai awal dari aktivitas

modul sistem aplikasi.

2.

Activity

menunjukkan aktivitas yang

dilakukan.

3. Final Activity
menunjukkan akhir dari

aktivitas.

4.

Decisions

menunjukkan aktivitas yang

harus dipilih apakah pilihan

pertama atau kedua.

25

5

Fork

Digunakan untuk

menunjukkan kegiatan yang

dilakukan secara paralel atau

untuk menggabungkan dua

kegiatan paralel menjadi satu.

6

Rake

Menunjukkan adanya

dekomposisi

7 Tanda waktu

8 Flow Final Aliran akhir

9

Signal

sebagai pengirim dan

penerima pesan dari aktivitas

yang terjadi. Sinyal terdiri dari

sinyal penerima yang

digambarkan dengan poligon

terbuka dan sinyal pengirim

dengan yang digambarkan

dengan convex poligon.

2.8.4. Sequence Diagram

Sequence Diagram secara grafis menggambarkan

bagaimana objek berinteraksi dengan satu sama lain melalui

pesan pada sekuensi sebuah use case atau operasi. Diagram ini

26

mengilustrasikan bagaimana pesan terkirim dan diterima di

antara objek dan dalam sekuensi. (Herlawati, 2011)

 Tabel 2.5 Simbol Sequence Diagram

No. Simbol Nama Keterangan

1.

Object

Object merupakan instance

dari sebuah class dan

dituliskan tersusun secara

horizontal.

2.

Actor

Actor juga dapat

berkomunikasi dengan object,

maka actor juga dapat

diurutkan sebagai kolom.

3.

Lifeline

Lifeline mengindikasikan

keberadaan sebuah object

dalam basis waktu.

4.

Activation

Activation dinotasikan sebagai

sebuah kotak segi empat yang

digambar pada sebuah

lifeline.

5.

 Message

Message digambarkan

dengan anak panah horizontal

antara activation.

