ANALISIS SENTIMEN BERBASIS SUPPORT VECTOR MECHINE DALAM ULASAN PENGGUNA APLIKASI CHARGE.IN

Ramadhani, Andira Eka Putri and Susanti, Meilia Nur Indah and abdurrasyid, abdurrasyid (2024) ANALISIS SENTIMEN BERBASIS SUPPORT VECTOR MECHINE DALAM ULASAN PENGGUNA APLIKASI CHARGE.IN. Diploma thesis, ITPLN.

[thumbnail of 202031002_ ANDIRA EKA PUTRI RAMADHANI_2020310_ANDIRA EKA PUTRI Ram.pdf] Text
202031002_ ANDIRA EKA PUTRI RAMADHANI_2020310_ANDIRA EKA PUTRI Ram.pdf
Restricted to Repository staff only

Download (3MB)

Abstract

Kendaraan listrik semakin populer karena emisi gas buang yang rendah. PLN berperan penting dalam mendukung kendaraan listrik melalui pembangunan Stasiun Pengisian Kendaraan Listrik Umum (SPKLU) dengan sistem pengisian daya cepat. Aplikasi Charge.In digunakan untuk pembayaran dan pemantauan pengisian daya kendaraan listrik. Proses analisis sentimen terhadap ulasan aplikasi Charge.in di Google Play Store dalam penelitian ini dilakukan menggunakan 1189 data ulasan. Ulasan pengguna aplikasi sangat penting, dengan ulasan positif meningkatkan peringkat dan ulasan negatif menurunkan peringkat. Analisis sentimen digunakan untuk memahami opini dalam ulasan, dengan Support Vector Machine (SVM) sebagai teknik yang efektif dalam klasifikasi teks. Penelitian ini menggunakan analisis sentimen berbasis SVM pada ulasan pengguna aplikasi Charge.In untuk memahami pandangan dan kebutuhan pengguna serta memberikan umpan balik bagi pengembang. Dari confusion matrix, diperoleh akurasi sebesar 98%, precision negatif sebesar 0.98, precision positif sebesar 1.00, recall negatif sebesar 1.00, recall positif sebesar 0.93, F1 score negatif sebesar 0.99, dan F1 score positif sebesar 0.96. Hasil analisis menunjukkan dominasi sentimen negatif dengan 891 ulasan negatif dibandingkan 297 ulasan positif.

Electric vehicles are increasingly popular due to their low exhaust emissions. PLN plays an important role in supporting electric vehicles through the construction of Public Electric Vehicle Charging Stations (SPKLU) with a fast charging system. The Charge.In app is used for payment and monitoring of electric vehicle charging. The sentiment analysis process of the Charge.in application reviews on the Google Play Store in this study was carried out using 1189 review data. App user reviews are very important, with positive reviews increasing ratings and negative reviews decreasing ratings. Sentiment analysis was used to understand the opinions in the reviews, with Support Vector Machine (SVM) being an effective technique in text classification. This research uses SVM-based sentiment analysis on user reviews of the Charge.In app to understand users' views and needs and provide feedback for developers. From the confusion matrix, an accuracy of 98%, negative precision of 0.98, positive precision of 1.00, negative recall of 1.00, positive recall of 0.93, negative F1 score of 0.99, and positive F1 score of 0.96 were obtained. The analysis results show the dominance of negative sentiment with 891 negative reviews compared to 297 positive reviews.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Kendaraan Listrik, PLN, Aplikasi Charge.in, Analisis Sentimen, Support Vector Mechine, Google Play Store. Electric Vehicle, PLN, Charge.in App, Sentiment Analysis, Support Vector Machine, Google Play Store.
Subjects: Skripsi
Bidang Keilmuan > Teknik Informatika
Divisions: Fakultas Telematika Energi > S1 Teknik Informatika
Depositing User: Sudarman
Date Deposited: 15 Sep 2025 06:45
Last Modified: 15 Sep 2025 06:45
URI: https://repository.itpln.ac.id/id/eprint/1070

Actions (login required)

View Item
View Item