PREDIKSI REVENUE PENJUALAN ICONNET MENGGUNAKAN DECISION TREE

Medani, Putu Secylia Arya and Karmila, Sely and Sudirman, M. Yoga Distra (2024) PREDIKSI REVENUE PENJUALAN ICONNET MENGGUNAKAN DECISION TREE. Diploma thesis, ITPLN.

[thumbnail of 202031012_Putu Secylia Arya Medani_Revisi_Skr_PUTU SECYLIA ARYA Me.pdf] Text
202031012_Putu Secylia Arya Medani_Revisi_Skr_PUTU SECYLIA ARYA Me.pdf
Restricted to Repository staff only

Download (3MB)

Abstract

Pengembangan layanan WiFi di Indonesia, seperti ICONNET oleh PT Indonesia Comnets Plus, menghadapi persaingan ketat. Penelitian ini menggunakan Decision Tree untuk memprediksi revenue penjualan pada ICONNET. Dengan menganalisis data historis dan faktor-faktor terkait, model ini diharapkan mampu memberikan alternatif dalam strategi pemasaran dan pengambilan keputusan. Penelitian ini menggunakan dataset yang dikelompokkan menjadi monthly kemudian dibagi menjadi 80% data latih (35 baris data) dan 20% data uji (9 baris data). Hasil penelitian menunjukkan model Decision Tree belum bisa dikatakan baik dalam memprediksi revenue penjualan ICONNET dikarenakan nilai MAE, MSE, dan RMSE yang masih cukup tinggi, meskipun nilai R² mampu mencapai angka 71,96%. Prediksi model menunjukkan pertumbuhan revenue yang signifikan selama 13 bulan. Hasil prediksi ini disajikan dalam dashboard interaktif pada Streamlit yang dapat diakses publik untuk analisis mendalam dan pengambilan keputusan yang lebih baik.

The development of WiFi services in Indonesia, such as ICONNET by PT Indonesia Comnets Plus, faces intense competition. This research uses Decision Tree to predict sales revenue for ICONNET. By analyzing historical data and related factors, this model is expected to provide alternatives in marketing strategies and decision making. This research uses a dataset that is grouped into monthly then divided into 80% training data (35 rows of data) and 20% test data (9 rows of data). The results showed that the Decision Tree model could not be said to be good at predicting ICONNET's sales revenue because the MAE, MSE, and RMSE values were still quite high, although the R² value was able to reach 71.96%. Model predictions show significant revenue growth over 13 months. The prediction results are presented in an interactive dashboard on Streamlit that is publicly accessible for in-depth analysis and better decision-making.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Decision Tree, ICONNET, prediksi pendapatan, dasbor Decision Tree, ICONNET, revenue prediction, dashboard
Subjects: Skripsi
Bidang Keilmuan > Teknik Informatika
Divisions: Fakultas Telematika Energi > S1 Teknik Informatika
Depositing User: Sudarman
Date Deposited: 15 Sep 2025 06:49
Last Modified: 15 Sep 2025 06:49
URI: https://repository.itpln.ac.id/id/eprint/1072

Actions (login required)

View Item
View Item