PENERAPAN CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK DETEKSI AWAL INDIKASI COVID-19 DAN VIRAL PNEUMONIA PADA CITRA X-RAY PARU PARU

KITTA, MUH. ALDI ANDI and Kusuma, Dine Tiara and Palupiningsih, Pritasari (2021) PENERAPAN CONVOLUTIONAL NEURAL NETWORK (CNN) UNTUK DETEKSI AWAL INDIKASI COVID-19 DAN VIRAL PNEUMONIA PADA CITRA X-RAY PARU PARU. Diploma thesis, ITPLN.

[thumbnail of 201731255_Muh. Aldi Andi Kitta_Revisi_Skripsi_aldi muh andi kitta.pdf] Text
201731255_Muh. Aldi Andi Kitta_Revisi_Skripsi_aldi muh andi kitta.pdf
Restricted to Repository staff only

Download (5MB)

Abstract

Penelitian ini bertujuan untuk mengetahui cara pengklasifikasian X-ray paru-paru untuk deteksi awal indikasi Covid-19 dan Viral Pneumonia menggunakan metode Convolutional Neural Network (CNN) didasari dari permintaan screening awal yang cepat dan visualisai yang jelas untuk mendeteksi Covid-19. Metode penelitian yang digunakan menggunakan metode Convolutional Neural Network (CNN) dengan pembuatan model CNN menggunakan base model Mobilenetv2, Konvolusi, ReLu, Dropout, Maxpooling, Flatten dan Dense yang kemudian model CNN akan di deploy ke perangkat mobile. Hasil training model berada di tingkat akurasi 96.67% sementara pengujian model didapatkan tingkat akurasi 97% untuk tingkat akurasi menggunakan perthitungan confusion matriks.

This research aims to find out how to classify X-ray paru-parus of the lungs image for early detection of indications Covid-19 and Viral Pneumonia using the Convolutional Neural Network (CNN) algorithm based on requests for rapid initial screening and clear visualization to detect Covid-19. The research method used is the Convolutional Neural Network (CNN) algorithm with CNN modeling using the Mobilenetv2 as a base model, Convolution, ReLu, Dropout, Maxpooling, Flatten and Dense which then the CNN model will be deployed to mobile devices. The results of the training model have an accuracy rate of 96.67% while model testing obtained an accuracy rate of 97% for the level of accuracy using the confusion matriks calculation.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: CNN, X-ray paru-paru, Mobile, Covid-19, Viral Pneumonia CNN, X-ray paru-paru, Mobile, Covid-19, Viral Pneumonia
Subjects: Skripsi
Bidang Keilmuan > Teknik Informatika
Divisions: Fakultas Telematika Energi > S1 Teknik Informatika
Depositing User: Nurul Hidayati
Date Deposited: 19 Sep 2025 07:42
Last Modified: 19 Sep 2025 07:42
URI: https://repository.itpln.ac.id/id/eprint/1308

Actions (login required)

View Item
View Item