TEHUAYO, JIHAN VIOLA AZHARI and Luqman, Luqman and Prathama., Muhammad Fadli (2021) PENERAPAN ALGORITMA K-MEANS UNTUK PENGELOMPOKAN PASIEN INFEKSI VIRUS COVID-19 BERDASARKAN RENTANG USIA (STUDI KASUS : KOTA DUMAI). Diploma thesis, ITPLN.
![[thumbnail of 201731203_Jihan Viola Azhari Tehuayo_Revisi_S_jihan viola azhari t.pdf]](https://repository.itpln.ac.id/style/images/fileicons/text.png)
201731203_Jihan Viola Azhari Tehuayo_Revisi_S_jihan viola azhari t.pdf
Restricted to Repository staff only
Download (7MB)
Abstract
Satuan Tugas Penanganan Covid-19 Kota Dumai sudah berlangsung dari bulan Maret 2020. Dalam melakukan pendataan pasien yang terkena virus Covid-19, Satuan Tugas Penanganan Covid-19 Kota Dumai melakukan pendaataan secara manual. Permasalahan Satuan Tugas Covid-19 Kota Dumai yaitu kesulitan untuk mengetahui informasi yang lebih luas mengenai penyebaran pasien positif Covid-19. Berdasarkan hal ini Satuan Tugas Covid-19 Kota Dumai perlu mengolah data penyebaran virus untuk dapat memberikan informasi yang lebih luas. Tujuan penelitian ini untuk melakukan clustering data pasien Covid-19 dengan algoritma K�Means agar mengetahui rentang usia pasien Covid-19 yang rentan terkena virus Covid-19. Clustering K-Means merupakan salah satu metode data mining untuk mengelompokkan suatu data berdasarkan kemiripan. Pada penelitian ini menggunakan atribut diantaranya Umur, Jenis Kelamin, Puskesmas, Kelurahan dan Hasil Tes. Dalam menentukan jumlah cluster yang terpilih dilakukan pengujian clustering menggunakan Davies Boludin Index. Terpilih 3 cluster setelah melakukan proses clustering dengan nilai Davies Bouldin Index sebesar – 1.303.
Dumai City Covid-19 Handling Task Force has been running since March 2020. In collecting data on patients affected by the Covid-19 virus, the Dumai City Covid-19 Handling Task Force carried out data collection manually. The problem with the Dumai City Covid-19 Task Force is that it is difficult to find out more extensive information regarding the spread of Covid-19 positive patients. Based on this, the Dumai City Covid�19 Task Force needs to process data on the spread of the virus to be able to provide broader information. The purpose of this study was to cluster data on Covid-19 patients with the K-Means algorithm in order to determine the age range of Covid-19 patients who are susceptible to the Covid-19 virus. K-Means Clustering is a data mining method to group data based on similarities. In this study using attributes including Age, Gender, Puskesmas, Kelurahan and Test Results. In determining the number of selected clusters, clustering tests were carried out using the Davies Boludin Index. 3 clusters were selected after performing the clustering process with a Davies Bouldin Index value of –1.303.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Clustering, K-Means, Data Mining Clustering, K-Means, Data Mining |
Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
Depositing User: | Nurul Hidayati |
Date Deposited: | 22 Sep 2025 08:29 |
Last Modified: | 22 Sep 2025 08:29 |
URI: | https://repository.itpln.ac.id/id/eprint/1382 |