Badrudin, Topik and Fitriani, Yessy and Sudirman, M. Yoga Distra (2024) MODEL PREDIKSI KONSUMSI LISTRIK MENGGUNAKAN METODE LONG SHORT-TERM MEMORY (LSTM) DAN LEARNING VECTOR QUANTIZATON (LVQ) STUDI KASUS PT XYZ. Diploma thesis, ITPLN.
202031096 - Topik Badrudin - Revisi -Skripsi_TOPIK Badrudin.pdf
Restricted to Registered users only
Download (5MB)
Abstract
Energi listrik adalah sumber daya penting yang dibutuhkan untuk berbagai aktivitas manusia dan menjadi isu global, terutama di Indonesia, di mana cadangan energi listrik terbatas. Untuk mengatasi masalah ini, diperlukan prediksi yang akurat mengenai konsumsi dan beban listrik di masa depan. Metode Long Short-Term Memory (LSTM) digunakan untuk memprediksi konsumsi listrik. Penelitian ini menjelaskan mekanisme LSTM, memperkirakan konsumsi listrik tahun 2019, dan mengevaluasi akurasinya menggunakan data historis dari PT XYZ. Pengujian model LSTM melibatkan variasi hidden layer, batch size, dan epoch. Hasil terbaik menunjukkan akurasi 75,13% dengan hidden layer 128, batch size 64, dan epoch 32, serta RMSE terendah 40,44. Selain itu, hasil klasifikasi menggunakan Learning Vector Quantization (LVQ) dengan evaluasi Confusion Matrix menunjukkan akurasi rata-rata 72% dari sektor BIC1_av, BIC2_av, BIC3_av, IID1_av, IID2_av. Hal ini mengindikasikan bahwa kombinasi metode LSTM dan LVQ efektif dalam memprediksi dan mengklasifikasikan konsumsi listrik.
Electricity is a crucial resource required for various human activities and has become a global issue, especially in Indonesia, where electricity reserves are limited. To address this problem, accurate predictions of future electricity consumption and load are necessary. The Long Short-Term Memory (LSTM) method is employed to predict electricity consumption. This study explains the LSTM mechanism, estimates electricity consumption for the year 2019, and evaluates its accuracy using historical data from PT XYZ. The LSTM model testing involves variations in hidden layers, batch size, and epochs. The best results show an accuracy of 75.13% with 128 hidden layers, a batch size of 64, and 32 epochs, as well as the lowest RMSE of 40.44. Additionally, the classification results using Learning Vector Quantization (LVQ) with Confusion Matrix evaluation show an average accuracy of 72% for the BIC1_av, BIC2_av, BIC3_av, IID1_av, and IID2_av sectors. This indicates that the combination of the LSTM and LVQ methods is effective in predicting and classifying electricity consumption.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | Prakiraan, Listrik, Seri Waktu, Long Short-Term Memory (LSTM), Learning Vector Quantization (LVQ). Prediction, Electricity, Time Series, Long Short-Term Memory (LSTM), Learning Vector Quantization (LVQ). |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 30 Sep 2025 09:39 |
| Last Modified: | 30 Sep 2025 09:39 |
| URI: | https://repository.itpln.ac.id/id/eprint/1610 |
