Haniifah, Rojwaa and Wulandari, Dewi Arianti and purwanto, yudhi s. (2024) ANALISIS SENTIMEN KOMENTAR INSTAGRAM PMB INSTITUT TEKNOLOGI PLN MENGGUNAKAN METODE NAÏVE BAYES DAN LONG-SHORT TERM MEMORY (LSTM). Diploma thesis, ITPLN.
![[thumbnail of 202031109_Rojwaa Haniifah_Revisi_Skripsi_ROJWAA Haniifah.pdf]](https://repository.itpln.ac.id/style/images/fileicons/text.png)
202031109_Rojwaa Haniifah_Revisi_Skripsi_ROJWAA Haniifah.pdf
Restricted to Registered users only
Download (9MB)
Abstract
Penelitian ini menganalisis sentimen terhadap layanan Pendaftaran Mahasiswa Baru (PMB) ITPLN di Instagram menggunakan 579 komentar yang dikumpulkan selama periode 6 bulan dari Januari hingga Juni 2024. Proses text preprocessing melibatkan penghapusan data duplikat, cleaning, case folding, normalization, tokenization, dan stemming. Setelah text preprocessing, data diberi label menggunakan metode Lexicon Based dan dibobot dengan metode Term Frequency-Inverse Document Frequency (TF IDF). Untuk klasifikasi sentimen, penelitian ini menggunakan dua metode: Naïve Bayes dan Long-Short Term Memory (LSTM). Hasil menunjukkan bahwa metode LSTM, dengan akurasi 71%, lebih unggul dibandingkan Naïve Bayes yang memiliki akurasi 69%. Selain itu, hasil analisis sentimen menunjukkan bahwa komentar positif lebih dominan dibandingkan komentar negatif, mengindikasikan bahwa mayoritas pengguna Instagram memiliki pandangan positif terhadap layanan PMB ITPLN.
This study analyzes sentiment towards the New Student Enrollment (PMB) services of ITPLN on Instagram using 579 comments collected over a 6-month period from January to June 2024. The text preprocessing process involves removing duplicate data, cleaning, case folding, normalization, tokenization, and stemming. After text preprocessing, the data is labeled using the Lexicon-Based method and weighted using the Term Frequency Inverse Document Frequency (TF-IDF) method. For sentiment classification, this study uses two methods: Naïve Bayes and Long-Short Term Memory (LSTM). The results show that the LSTM method, with an accuracy of 71%, outperforms Naïve Bayes, which has an accuracy of 69%. Additionally, the sentiment analysis results indicate that positive comments are more dominant than negative comments, suggesting that the majority of Instagram users have a positive view of the PMB services at ITPLN.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Analisis Sentimen, Text Mining, LSTM, Naïve Bayes, Perbandingan Sentiment Analysis, Text Mining, LSTM, Naïve Bayes, Comparison |
Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
Depositing User: | Sudarman |
Date Deposited: | 30 Sep 2025 09:46 |
Last Modified: | 30 Sep 2025 09:46 |
URI: | https://repository.itpln.ac.id/id/eprint/1611 |