Intania, Salsabila Apri and Kusuma, Dine Tiara and Sangadji, Iriansyah BM (2025) KOMPARASI METODE LINEAR REGRESI DAN ADAPTIVE LINEAR NEURON (ADALINE) PADA DISTRIBUSI KONSUMSI ENERGI LISTRIK. Diploma thesis, ITPLN.
202131028_SALSABILA APRI INTANIA_REVISI_SKRIP_Salsabila Apri Intan.pdf
Restricted to Registered users only
Download (2MB)
Abstract
Penelitian ini membandingkan metode Regresi Linier dan Adaptive Linear Neuron (Adaline) dalam peramalan daya konsumsi energi listrik berdasarkan tingkat akurasi menggunakan Root Mean Square Error (RMSE). Data yang digunakan merupakan rekaman konsumsi daya listrik di Kota Maroko tahun 2017 dengan empat variabel: datetime, power consumption zona 1, zona 2, dan zona 3. Data dibagi menjadi 80% untuk training dan 20% untuk testing. Hasil peramalan menunjukkan bahwa metode Regresi Linier menghasilkan nilai error sebesar 0.2824, 0.0628, dan 0.1736 untuk masing-masing zona, sedangkan metode Adaline menghasilkan error sebesar 0.0424, 0.0494, dan 0.0664. Rata-rata akurasi peramalan metode Regresi Linier adalah 82.71%, sedangkan metode Adaline mencapai 94.72%. Hasil ini menunjukkan bahwa metode Adaline memiliki tingkat akurasi yang lebih tinggi dibandingkan Regresi Linier dalam peramalan daya konsumsi energi listrik.
This study compares the Linear Regression and Adaptive Linear Neuron (Adaline) methods in forecasting electrical energy consumption based on the level of accuracy using Root Mean Square Error (RMSE). The data used is a record of electricity consumption in Morocco City in 2017 with four variables: datetime, power consumption zone 1, zone 2, and zone 3. The data was divided into 80% for training and 20% for testing. The forecasting results show that the Linear Regression method produces error values of 0.2824, 0.0628, and 0.1736 for each zone, while the Adaline method produces errors of 0.0424, 0.0494, and 0.0664. The average forecasting accuracy of the Linear Regression method was 82.71%, while the Adaline method reached 94.72%. These results show that the Adaline method has a higher level of accuracy than Linear Regression in forecasting electrical energy consumption.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | Regresi Linier, Adaptive Linear Neuron (Adaline), peramalan, akurasi, Root Mean Square Error (RMSE), konsumsi energi listrik. Linear Regression, Adaptive Linear Neuron (Adaline), forecasting, accuracy, Root Mean Square Error (RMSE), electrical energy consumption. |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 09 Oct 2025 06:04 |
| Last Modified: | 09 Oct 2025 06:04 |
| URI: | https://repository.itpln.ac.id/id/eprint/1988 |
