Bokings, Parisya Febriany and Ningrum, Rahma Farah and Praptini, Puji Catur Siswi (2025) EVALUASI KINERJA ALGORITMA MACHINE LEARNING DALAM MEMPREDIKSI BIAYA KIRIM BERDASARKAN BERAT DAN TUJUAN PENGIRIMAN (STUDI KASUS J&T CARGO MANADO). Diploma thesis, ITPLN.
202131119_PARISYA F BOKINGS_Skripsi_Parisya Bokings.pdf
Restricted to Registered users only
Download (5MB)
Abstract
Pengiriman barang merupakan bagian penting dalam layanan logistik yang membutuhkan estimasi biaya yang akurat agar proses operasional berjalan efisien. Penelitian ini bertujuan untuk mengevaluasi kinerja beberapa algoritma machine learning regresi dalam memprediksi biaya kirim berdasarkan berat dan tujuan pengiriman, dengan studi kasus pada J&T Cargo Manado. Algoritma yang digunakan meliputi Linear Regression, Random Forest Regressor, dan K-Nearest Neighbors (KNN). Data yang digunakan mencakup informasi berat paket, lokasi tujuan, serta jarak pengiriman yang dihitung menggunakan koordinat geografis. Model dievaluasi menggunakan metrik Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), dan koefisien determinasi (R²). Berdasarkan hasil evaluasi, model Linear Regression menunjukkan performa terbaik dengan nilai R² 0.9618 paling tinggi dan kesalahan prediksi dengan nilai 232091.43 untuk MAE dan 400092.77 untuk RMSE. Selain itu, analisis clustering dilakukan untuk mengidentifikasi pola pengiriman berdasarkan fitur lokasi dan biaya kirim, yang dapat memberikan wawasan tambahan bagi pengambilan keputusan. Hasil penelitian ini menunjukkan bahwa pendekatan berbasis machine learning dapat digunakan secara efektif untuk memprediksi biaya kirim dan membantu perusahaan logistik dalam mengoptimalkan perencanaan dan alokasi sumber daya.
Shipping is a crucial part of logistics services, requiring accurate cost estimation for efficient operational processes. This study aims to evaluate the performance of several machine learning regression algorithms in predicting shipping costs based on weight and destination, with a case study of J&T Cargo Manado. The algorithms used include Linear Regression, Random Forest Regressor, and K-Nearest Neighbors (KNN). The data used includes information on package weight, destination location, and shipping distance calculated using geographic coordinates. The models were evaluated using the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²) metrics. Based on the evaluation results, the Linear Regression model showed the best performance with the highest R² value of 0.9618 and prediction errors of 232091.43 for MAE and 400092.77 for RMSE. In addition, clustering analysis was conducted to identify shipping patterns based on location and shipping cost features, which can provide additional insights for decision making. The results of this study indicate that a machine learning-based approach can be used effectively to predict shipping costs and help logistics companies optimize resource planning and allocation.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | prediksi biaya kirim, machine learning, regresi, Linear Regression, Random Forest, KNN, clustering shipping cost prediction, machine learning, regression, Linear Regression, Random Forest, KNN, clustering |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 09 Oct 2025 08:51 |
| Last Modified: | 09 Oct 2025 08:51 |
| URI: | https://repository.itpln.ac.id/id/eprint/2026 |
