Andini, Yuli and Kuswardani, Dwina and Affandi S, Riki Ruli (2021) KLASIFIKASI CITRA CT SCAN HATI UNTUK DETEKSI PENYAKIT TUMOR HATI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). Diploma thesis, IT PLN.
(FIX) Yuli Andini_201831070_Skripsi.pdf
Restricted to Registered users only
Download (4MB)
Abstract
Liver tumors can be caused by excessive cell growth in the liver organs. This study aims to determine the classification of Liver CT Scan images in the detection of Liver Tumor disease using the Convolutional Neural Network (CNN) method with the Inception ResnetV2 architecture which is based on helping ordinary people or medical personnel make a decision in diagnosing liver tumor disease early. The Convolutional Neural Network (CNN) method with the Inception ResnetV2 architecture was chosen because this method produces excellent performance in classifying 2-dimensional image data and the resulting training model results have relatively low computation. The accuracy training results of the Convolutional Neural Network (CNN) architecture that have been made show an accuracy of 98% and the results of the application training validation show an accuracy of 92.5%
Tumor Hati dapat disebabkan oleh pertumbuhan sel yang berlebihan pada organ hati. Penelitian ini bertujuan untuk mengetahui klasifikasi citra CT Scan Hati pada deteksi penyakit Tumor Hati menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Inception ResnetV2 yang di dasari untuk membantu masyarakat awam
ataupun tenaga medis mengambil suatu keputusan dalam mendiagnosis penyakit tumor hati secara dini. Metode Convolutional Neural Network (CNN) dengan arsitektur Inception ResnetV2 dipilih karena metode ini menghasilkan performa yang sangat baik dalam mengklasifikasi data citra 2 dimensi dan hasil training model yang dihasilkan memiliki komputasi yang relative rendah. Hasil training akurasi dari arsitektur Convolutional Neural Network (CNN) yang sudah dibuat menunjukkan keakuratan sebesar 98% dan hasil validasi training aplikasi menunjukkan keakuratan sebesar 92,5%.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | Liver Tumor, Convolutional Neural Network (CNN), Inception ResnetV2. Tumor Hati, Convolutional Neural Network (CNN), Inception ResnetV2 |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sutrisno |
| Date Deposited: | 13 Oct 2025 07:01 |
| Last Modified: | 13 Oct 2025 07:01 |
| URI: | https://repository.itpln.ac.id/id/eprint/2139 |
