Ramadhayanti, Erla Dwi and Rusjdi, Darma and Wulandari, Dewi Arianti (2025) Klasifikasi Daun Muda Dan Daun Tua Pada Tanaman Kelor Dan Katuk Berbasis Convolutional Neural Network(CNN). Diploma thesis, ITPLN.
202131029_Erla Dwi Ramadhayanti_Revisi_Skrips_Erla Dwi Ramadhayant.pdf
Restricted to Registered users only
Download (3MB)
Abstract
Daun kelor (Moringa oleifera) dan daun katuk (Sauropus androgynus) merupakan tanaman herbal yang kaya nutrisi dan memiliki potensi sebagai bahan pangan pendukung kesehatan, termasuk bagi penderita diabetes melitus tipe 2. Penelitian ini bertujuan mengembangkan sistem klasifikasi otomatis untuk membedakan daun kelor dan katuk berdasarkan tingkat kematangan (muda dan tua), yang dapat membantu masyarakat awam mengenali jenis daun dengan tepat sehingga pemanfaatannya lebih optimal. Dataset terdiri dari 100 citra asli (masing-masing kelas 25 citra), kemudian melalui proses background removal dan augmentasi menjadi 800 citra. Data dibagi dengan rasio 80% pelatihan, 10% validasi, dan 10% pengujian. Model CNN dibangun dengan arsitektur tiga lapisan konvolusi, max pooling, flatten, dan dense layer, serta dilatih menggunakan Google Colab dengan bahasa pemrograman Python. Evaluasi menggunakan confusion matrix menghasilkan akurasi 97,50%, presisi 97,50%, recall 97,50%, dan F1-score 97,50%. Hasil penelitian membuktikan CNN efektif membedakan visual daun muda dan tua.
Moringa (Moringa oleifera) and Katuk (Sauropus androgynus) leaves are nutrient-rich herbal plants with potential as functional foods, especially for supporting the health of type 2 diabetes mellitus patients. This study aims to develop an automatic classification system to distinguish Moringa and Katuk leaves based on their maturity level (young and old), assisting the general public in correctly identifying the leaves for optimal utilization. The dataset consisted of 100 original images (25 per class), which were processed through background removal and augmented to 800 images. Data were split into 80% training, 10% validation, and 10% testing sets. The CNN model was designed with three convolutional layers, max pooling, flatten, and dense layers, trained using Google Colab in Python. Model evaluation using a confusion matrix achieved 97.50% accuracy, 97.50% precision, 97.50% recall, and 97.50% F1-score. The results demonstrate that CNN can effectively differentiate visual features of young and old leaves.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | CNN, daun kelor, daun katuk, klasifikasi citra, diabetes melitus CNN, moringa leaves, Sauropus androgynus, image classification, diabetes mellitus |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 13 Oct 2025 07:47 |
| Last Modified: | 13 Oct 2025 07:47 |
| URI: | https://repository.itpln.ac.id/id/eprint/2157 |
