Cahayani, Nabilla Putri and Kusuma, Dine Tiara and Susanti, Meilia Nur Indah (2025) Komparasi Simple Multi-Attribute Rating Technique dan K Nearest Neighbor Dalam Menentukan Rekomendasi Pendirian Stasiun Pengisian Kendaraan Listrik Umum. Diploma thesis, ITPLN.
202131012_Nabilla Putri Cahayani_Revisi_Skrip_Nabilla Putri Cahaya 1.pdf
Restricted to Registered users only
Download (20MB)
Abstract
Pertumbuhan kendaraan listrik di Indonesia mendorong kebutuhan akan infrastruktur pendukung, salah satunya adalah Stasiun Pengisian Kendaraan Listrik Umum (SPKLU). Penentuan lokasi strategis untuk pembangunan SPKLU menjadi krusial guna menjamin kemudahan akses dan efisiensi penggunaan. Penelitian ini membandingkan metode Simple Multi-Attribute Rating Technique (SMART) dan K-Nearest Neighbor (KNN) dalam memberikan rekomendasi lokasi pembangunan SPKLU di wilayah Tangerang menggunakan data sekunder yang mencakup variabel seperti kepadatan penduduk, jumlah ulasan, dan jarak antar infrastruktur. Hasil evaluasi menunjukkan bahwa metode KNN unggul secara metrik dengan skor Average Precision (AP) 0.7611 dan Normalized Discounted Cumulative Gain (NDCG) 0.7017, melampaui SMART yang mencatat skor AP 0.7500 dan NDCG 0.4329. Meskipun demikian, kedua metode menunjukkan fungsi praktis yang berbeda, KNN terbukti presisi dalam mengidentifikasi ulang lokasi dengan memvalidasi pola yang sudah ada, sementara SMART berhasil merekomendasikan lokasi lokasi baru yang prospektif sehingga dapat mendukung pengambilan keputusan dalam perencanaan pembangunan SPKLU secara lebih tepat sasaran dan berkelanjutan.
The growth of electric vehicles in Indonesia drives the need for supporting infrastructure, one of which is the Public Electric Vehicle Charging Station (SPKLU). The determination of strategic locations for SPKLU development is crucial to ensure ease of access and usage efficiency. This research compares the Simple Multi-Attribute Rating Technique (SMART) and K-Nearest Neighbor (KNN) methods in providing recommendations for SPKLU development locations in the Tangerang region using secondary data, including variables such as population density, number of reviews, and inter-infrastructure distance.Evaluation results show that the KNN method excels metrically with an Average Precision (AP) score of 0.7611 and a Normalized Discounted Cumulative Gain (NDCG) of 0.7017, surpassing SMART, which recorded an AP of 0.7500 and an NDCG of 0.4329. Nevertheless, the two methods demonstrate different practical functions: KNN proves to be precise in re-identifying locations by validating existing patterns, while SMART successfully recommends new prospective locations that can support decision-making in the planning of SPKLU development in a more targeted and sustainable manner.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | SPKLU, SMART, KNN, Average Precision, NDCG, pengambilan keputusan, lokasi strategis SPKLU, SMART, KNN, Average Precision, NDCG, decision-making, strategic location |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 13 Oct 2025 07:54 |
| Last Modified: | 13 Oct 2025 07:54 |
| URI: | https://repository.itpln.ac.id/id/eprint/2159 |
