Dipobawono, Gabriel Satrio and Arvio, Yozika (2025) PERBANDINGAN ALGORITMA ADABOOST DAN KNN DALAM KLASIFIKASI PENYAKIT HIPERTENSI. Diploma thesis, ITPLN.
202131003_GabrielSatrioDipobawono_Revisi_Skri_Gabriel Satrio Dipob.pdf
Restricted to Registered users only
Download (8MB)
Abstract
Penyakit Hipertensi merupakan salah satu penyakit tidak menular yang jumlah penderitanya terus meningkat setiap tahun, termasuk di wilayah Jakarta Barat. Diagnosis dini yang akurat sangat dibutuhkan guna meminimalkan komplikasi yang dapat terjadi. Penelitian ini bertujuan untuk membandingkan performa dua algoritma klasifikasi, yaitu K-Nearest Neighbor (KNN) dan AdaBoost, dalam mengklasifikasikan penyakit hipertensi berdasarkan data pasien dari Puskesmas Kembangan, Jakarta Barat. Data yang digunakan mencakup berbagai atribut medis seperti kadar glukosa darah, tekanan darah, usia, indeks massa tubuh (BMI), dan riwayat keluarga. Penelitian dilakukan dengan menerapkan tahapan preprocessing, pelatihan model, dan evaluasi performa menggunakan metrik accuracy, precision, recall, dan F1-score. Metode KNN dipilih karena kemampuannya dalam mengklasifikasikan berdasarkan kemiripan data, sementara AdaBoost digunakan untuk meningkatkan akurasi prediksi dengan menggabungkan beberapa weak learners. Hasil dari penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan sistem pendukung keputusan medis berbasis data mining serta membantu pihak puskesmas dalam proses klasifikasi dan deteksi dini hipertensi secara lebih efektif dan efisien.
Hypertension is one of the non-communicable diseases whose number of sufferers continues to increase every year, including in West Jakarta. Early and accurate diagnosis is highly needed to minimize potential complications. This study aims to compare the performance of two classification algorithms, namely K-Nearest Neighbor (KNN) and AdaBoost, in classifying hypertension based on patient data from Puskesmas Kembangan, West Jakarta. The data used includes various medical attributes such as blood glucose levels, blood pressure, age, body mass index (BMI), and family history. The research was conducted by implementing preprocessing steps, model training, and performance evaluation using metrics such as accuracy, precision, recall, and F1-score. The KNN method was chosen for its ability to classify based on data similarity, while AdaBoost was used to improve prediction accuracy by combining several weak learners. The results of this study are expected to contribute to the development of medical decision support systems based on data mining and to assist public health centers in the classification and early detection of hypertension more effectively and efficiently.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | Hipertensi, KNN, AdaBoost, Data Mining, Klasifikasi Hypertension, KNN, AdaBoost, Data Mining, Classification |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 13 Oct 2025 08:58 |
| Last Modified: | 13 Oct 2025 08:58 |
| URI: | https://repository.itpln.ac.id/id/eprint/2178 |
