Hannafi, Rasyid Abdul and Arvio, Yozika and purwanto, yudhi s. (2025) SISTEM PAKAR DIAGNOSIS PENYAKIT ISPA MENGGUNAKAN METODE CERTAINTY FACTOR DAN FORWARD CHAINING DI PUSKESMAS TANJUNG PRIOK. Diploma thesis, ITPLN.
202131007_RasyidAbdulHannafi_Revisi_Skripsi_Rasyid Abdul Hannafi 1.pdf
Restricted to Registered users only
Download (5MB)
Abstract
Infeksi Saluran Pernapasan Akut (ISPA) merupakan salah satu penyakit dengan tingkat prevalensi tinggi di Indonesia, termasuk di wilayah Jakarta Utara, khususnya di Puskesmas Tanjung Priok. Penyakit ini membutuhkan penanganan yang cepat dan akurat untuk mencegah timbulnya komplikasi, sementara keterbatasan jumlah tenaga medis masih menjadi kendala di lapangan. Penelitian ini bertujuan untuk mengembangkan sebuah sistem pakar yang mampu memberikan rekomendasi obat bagi pasien ISPA berdasarkan gejala yang dialami. Sistem dikembangkan dengan menerapkan metode Certainty Factor untuk menghitung tingkat kepastian diagnosis, serta metode Forward Chaining untuk melakukan proses inferensi dari gejala menuju kesimpulan penyakit dan rekomendasi pengobatan. Data penelitian diperoleh dari rekam medis pasien ISPA di Puskesmas Tanjung Priok tahun 2024. Evaluasi sistem dilakukan melalui pengujian Black Box Testing sesuai standar IEEE 829, ISO/IEC 9126 untuk memastikan fungsionalitas dan akurasi sistem dan memberikan rekomendasi obat yang dihasilkan. Hasil evaluasi menunjukkan bahwa sistem dibangun dengan 7 rules diagnosis penyakit ISPA, dan seluruh hasil perhitungan metode Certainty Factor menunjukkan nilai keyakinan tinggi (97–99%). Perbandingan hasil uji sistem dengan diagnosa pakar menunjukkan kesesuaian 99%, sehingga sistem mampu memberikan diagnosis dan rekomendasi obat yang konsisten dengan hasil dokter. Dengan demikian, sistem berpotensi membantu pasien dalam memperoleh gambaran awal diagnosis dan rekomendasi obat secara cepat dan mandiri sebelum melakukan pemeriksaan lebih lanjut ke tenaga medis.
Acute Respiratory Infection (ARI) is one of the most prevalent diseases in Indonesia, particularly in North Jakarta, especially at the Tanjung Priok Community Health Center. This disease requires rapid and accurate treatment to prevent complications, while the limited number of medical personnel remains a challenge in the field. This study aims to develop an expert system capable of providing medication recommendations for ARI patients based on the symptoms they experience. The system was developed using the Certainty Factor method to calculate the confidence level of the diagnosis, and the Forward Chaining method to perform inference from symptoms to disease conclusions and medication recommendations. The research data were obtained from medical records of ARI patients at the Tanjung Priok Community Health Center in 2024. The system was evaluated through Black Box Testing in accordance with IEEE 829 and ISO/IEC 9126 standards to ensure functionality and accuracy. The evaluation results show that the system was built with 7 diagnostic rules for ARI diseases, and all Certainty Factor calculations produced high confidence values (97–99%). Comparison between the system’s output and expert diagnoses demonstrated a 99% match, indicating that the system is capable of providing diagnoses and medication recommendations consistent with doctors’ assessments. Therefore, the system has the potential to assist patients in obtaining an initial overview of their diagnosis and recommended medication quickly and independently before consulting medical professionals.
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | Sistem Pakar, ISPA, Certainty Factor, Forward Chaining, BlackBox Testing, Rekomendasi Obat. Expert System, Acute Respiratory Infection (ARI), Certainty Factor, Forward Chaining, BalckBox Testing, Drug Recommendation. |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Sudarman |
| Date Deposited: | 14 Oct 2025 02:15 |
| Last Modified: | 14 Oct 2025 03:01 |
| URI: | https://repository.itpln.ac.id/id/eprint/2204 |
