PREDIKSI KUALITAS UDARA DI JAKARTA MENGGUNAKAN METODE LONG SHORT-TERM MEMORY (LSTM)

NURRAHMAH, SALSABILA and Kuswardani, Dwina and Siregar, Riki Ruli Affandi (2025) PREDIKSI KUALITAS UDARA DI JAKARTA MENGGUNAKAN METODE LONG SHORT-TERM MEMORY (LSTM). Diploma thesis, ITPLN.

[thumbnail of 202131198_Salsabila Nurrahmah_Revisi_Skripsi_SALSABILA NURRAHMAH.pdf] Text
202131198_Salsabila Nurrahmah_Revisi_Skripsi_SALSABILA NURRAHMAH.pdf
Restricted to Registered users only

Download (3MB)

Abstract

Indeks Standar Pencemar Udara (ISPU) merupakan indikator penting untuk menilai kualitas udara dan dampaknya terhadap kesehatan masyarakat. Selama ini, perhitungan ISPU sering kali tidak dilakukan secara menyeluruh untuk masing-masing parameter pencemar. Pendekatan tersebut sering kali kurang akurat untuk menilai kualitas udara disetiap parameter secara utuh. Penelitian ini bertujuan untuk menghitung indeks masing-masing parameter pencemar udara (PM2.5, PM₁₀, SO₂, CO, O₃, dan NO₂) berdasarkan nilai ambient, lalu mengembangkan model prediksi ISPU menggunakan algoritma Long Short-Term Memory (LSTM). Penelitian mengikuti tahapan CRISP DM, mulai dari pemahaman data, pra-pemrosesan termasuk normalisasi dan transformasi data, hingga pemodelan dan evaluasi. Model LSTM diuji menggunakan metrik evaluasi seperti MSE, RMSE, dan MAPE. Hasil penelitian menunjukkan bahwa model LSTM pada pengujian 80% data training dan 20% data testing menghasilkan diperoleh nilai Mean Absolute Error(MAE) 3,7219, dan Root Mean Squared Error (RMSE) sebesar 4.8898, menunjukkan bahwa secara rata-rata, jarak (penyimpangan) antara hasil prediksi dan nilai aktual berada sekitar 4.89 satuan. Selain itu, nilai Mean Absolute Percentage Error (MAPE) sebesar 9.13% mengindikasikan bahwa rata-rata kesalahan persentase prediksi berada di bawah 10%. Temuan ini menunjukkan potensi model prediktif berbasis deep learning dalam mendukung sistem pemantauan kualitas udara secara lebih informatif dan berbasis data historis.

The Air Pollutant Index (API) is an important indicator for assessing air quality and its impact on public health. Until now, API calculations have often not been carried out comprehensively for each pollutant parameter. This approach is often inaccurate for assessing air quality for each parameter as a whole. This study aims to calculate the index for each air pollutant parameter (PM2.5, PM₁₀, SO₂, CO, O₃, and NO₂) based on ambient values, then develop an AQI prediction model using the Long Short-Term Memory (LSTM) algorithm. The study follows the CRISP-DM framework, starting from data understanding, pre-processing including data normalization and transformation, to modeling and evaluation. The LSTM model is tested using evaluation metrics such as MSE, RMSE, and MAPE. The results showed that the LSTM model, tested on 80% training data and 20% testing data, yielded a Mean Absolute Error (MAE) of 3.7219 and a Root Mean Squared Error (RMSE) of 4.8898, indicating that, on average, the distance (deviation) between the predicted values and the actual values was approximately 4.89 units. Additionally, the Mean Absolute Percentage Error (MAPE) value of 9.13% indicates that the average percentage error of the prediction is below 10%. These findings highlight the potential of deep learning-based predictive models in supporting more informative and historically data-driven air quality monitoring systems.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Kualitas Udara, Indeks Standar Pencemar Udara (ISPU), ISPU, Prediksi, Short-Term Memory (LSTM), MAPE, MSE, RMSE Air Quality, Air Pollutant Standard Index (ISPU), ISPU, Prediction, Long Short-Term Memory (LSTM), MAPE, MSE, RMSE.
Subjects: Skripsi
Bidang Keilmuan > Teknik Informatika
Divisions: Fakultas Telematika Energi > S1 Teknik Informatika
Depositing User: Sudarman
Date Deposited: 14 Oct 2025 08:23
Last Modified: 14 Oct 2025 08:23
URI: https://repository.itpln.ac.id/id/eprint/2301

Actions (login required)

View Item
View Item