PENERAPAN DEEP LEARNING DENGAN FASTER R-CNN RESNET-50 UNTUK DETEKSI OBJEK KERUSAKAN PADA MODUL SURYA

Ikhsan, Fathirul and Cahyaningtyas, Rizqia and Kuswardani, Dwina (2025) PENERAPAN DEEP LEARNING DENGAN FASTER R-CNN RESNET-50 UNTUK DETEKSI OBJEK KERUSAKAN PADA MODUL SURYA. Diploma thesis, ITPLN.

[thumbnail of 202131171_Fathirul Ikhsan_Revisi_Skripsi_Fathirul Ikhsan.pdf] Text
202131171_Fathirul Ikhsan_Revisi_Skripsi_Fathirul Ikhsan.pdf
Restricted to Registered users only

Download (4MB)

Abstract

Modul surya merupakan salah satu komponen utama dalam sistem pembangkit listrik tenaga surya yang berfungsi mengubah energi matahari menjadi energi listrik. Namun, kinerja modul surya dapat menurun akibat berbagai kerusakan seperti physical damage dan electrical damage yang memengaruhi performa sistem. Penelitian ini bertujuan membangun model deteksi kerusakan tersebut menggunakan metode Object Detection berbasis arsitektur Faster R-CNN dengan backbone ResNet50. Dataset yang digunakan berasal dari platform Kaggle, yang telah dianotasi secara manual dalam format PASCAL VOC menjadi dua kelas kerusakan, kemudian diperluas melalui proses augmentasi. Dataset dibagi menjadi 80% untuk pelatihan, 10% validasi, dan 10% pengujian. Model dilatih menggunakan citra berukuran 800x800 piksel dengan variasi Batch size dan jumlah epoch. Evaluasi kinerja dilakukan menggunakan metrik mean Average Precision (mAP), Confusion matrix, precision, recall, dan F1-score. Hasil terbaik diperoleh pada konfigurasi Batch size 8 dan learning rate 0,0001 dan dengan epoch 30, dengan akurasi sebesar 89% dan mAP mencapai 93%, serta nilai akurasi dan presisi yang tinggi untuk kedua jenis kerusakan. Penelitian ini menunjukkan bahwa metode Faster R-CNN ResNet50 mampu mendeteksi kerusakan pada permukaan modul surya dengan tingkat ketepatan dan berpotensi diterapkan pada sistem pemantauan otomatis secara real-time.

Solar modules are critical components of photovoltaic power generation systems, responsible for converting solar energy into electrical energy. However, their performance can deteriorate over time due to various types of damage, such as physical damage and electrical damage, which adversely impact overall system output and reliability. This study proposes a damage detection model employing an object detection approach based on the Faster R-CNN architecture with a ResNet50 backbone. The dataset, sourced from the Kaggle platform, was manually annotated in PASCAL VOC format into two damage categories and subsequently expanded through data augmentation techniques. The dataset was partitioned into 80% for Training, 10% for validation, and 10% for testing. The model was Trained on 800×800 piksel Citras with variations in Batch size and epoch settings. Model performance was evaluated using mean Average Precision (mAP), Confusion matrix, precision, recall, and F1-score. The optimal configuration, achieved with a Batch size of 8, a learning rate of 0.0001, and 30 epochs, yielded an accuracy of 89% and an mAP of 93%, demonstrating high precision and recall for both damage classes. The findings indicate that the Faster R-CNN ResNet50 framework is a robust and accurate solution for solar module damage detection and holds significant potential for deployment in real-time automated monitoring applications.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Panel Surya, Deteksi Kerusakan, Citra RGB, Faster R-CNN, ResNet50, Deep learning, Physical Damage, Electrical Damage. Solar Panel, Damage Detection, RGB Citra, Faster R-CNN, ResNet50, Deep learning, Physical Damage, Electrical Damage.
Subjects: Skripsi
Bidang Keilmuan > Teknik Informatika
Divisions: Fakultas Telematika Energi > S1 Teknik Informatika
Depositing User: Sudarman
Date Deposited: 15 Oct 2025 03:14
Last Modified: 15 Oct 2025 03:14
URI: https://repository.itpln.ac.id/id/eprint/2323

Actions (login required)

View Item
View Item