Klasifikasi Penentuan Tingkat Permasalahan Pada Data Helpdesk Menggunakan Metode K-Means. (Studi kasus: PT. Prima Layanan Enjiniring)

Anas, Andi Irvanto and Agtriadi, Herman Bedi and Jatnika, Hendra (2019) Klasifikasi Penentuan Tingkat Permasalahan Pada Data Helpdesk Menggunakan Metode K-Means. (Studi kasus: PT. Prima Layanan Enjiniring). Diploma thesis, STT PLN.

[thumbnail of SKRIPSI201431241.pdf] Text
SKRIPSI201431241.pdf
Restricted to Registered users only

Download (6MB)

Abstract

PT. Prima National Engineering Services (PLN Enjiniring) does not have a good and informative recording system related to disturbances or complaints that occur in the IT field and there is no method that groups the total types of problems. This is the basis of this research with the implementation of information systems using the K-Means methodology as the basis for clustering methods in the helpdesk problem category. The K-Means Clustering Method Method classifies sub-categories of problems into several types of problem groups. The problem type data are grouped into four types of clusters that are classified based on the normalization value level criteria. Determination of cluster types based on the results of iterations of normalization values namely, C1 (Most Frequently Troubled), C2 (Frequently Troubled), C3 (Somewhat Problematic), C4 (Rarely Problematic)

PT. Prima Layanan Nasional Enjiniring (PLN Enjiniring) belum memiliki sistem pencatatan yang baik dan informatif terkait gangguan atau keluhan yang terjadi dalam bidang IT serta belum ada metode yang mengelompokkan total jenis masalah. Hal tersebut menjadi landasan penelitian ini dengan implementasi sistem informasi menggunakan metodologi K-Means sebagai dasar metode clustering kategori masalah helpdesk tersebut. Metode Metode K-Means Clustering mengelompokkan jenis sub-kategori masalah ke dalam beberapa kelompok jenis masalah. Data jenis masalah dikelompokkan menjadi empat jenis cluster yang diklasifikasikan berdasarkan tingkat nilai kriteria hasil normalisasi. Penentuan jenis cluster berdasarkan hasil iterasi dari nilai normalisasi, yakni C1(Paling Sering Bermasalah), C2(Sering Bermasalah), C3(Agak Bermasalah), C4(Jarang Bermasalah).

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Clustering, IT Helpdesk, K-Means
Subjects: Skripsi
Bidang Keilmuan > Teknik Informatika
Divisions: Fakultas Telematika Energi > S1 Teknik Informatika
Depositing User: Sutrisno
Date Deposited: 29 Oct 2025 03:40
Last Modified: 29 Oct 2025 03:40
URI: https://repository.itpln.ac.id/id/eprint/3101

Actions (login required)

View Item
View Item