UKASYAH, UKASYAH and Fitriani, Yessy and DAHRONI, ANDI (2021) KLASIFIKASI NAIVE BAYES BERBASIS ONLINE INCREMENTAL LEARNING PADA SISTEM DETEKSI LOGIN (STUDI KASUS SISTEM INFORMASI PROCESSMAKER PESANTREN TEKNOLOGI INFORMASI DAN KOMUNIKASI). Diploma thesis, ITPLN.
201731379_Ukasyah_Revisi_Skripsi_Ukasyah.pdf
Restricted to Repository staff only
Download (3MB)
Abstract
Insiden unauthorized access menjadi salah satu ancaman bagi sistem informasi Pesantren Teknologi Informasi dan Komunikasi (PeTIK). Kehilangan data penting, pencurian data rahasia dan pembajakan akun merupakan beberapa dampak yang timbul dari adanya unauthorized access. Sistem deteksi login yang diintegrasikan dengan sistem informasi ProcessMaker PeTIK dapat menjadi ekstensi tambahan dalam mencegah terjadinya insiden unauthorized access. Log login secara otomatis dihasilkan oleh sistem informasi dan sistem deteksi login bekerja dengan membaca data log login secara berkala. Dengan menggunakan algoritma Gaussian Naive Bayes (GNB), sistem deteksi login mampu melakukan klasifikasi dan pelatihan secara real-time. Berdasarkan hasil perhitungan confusion matrix pada skenario offline learning, diperoleh nilai akurasi sebesar 93%.
The incident of unauthorized access is one of the threats to the Pesantren Teknologi Informasi dan Komunikasi (PeTIK) information system. Loss of important data, theft of confidential data and account hijacking are some of the impacts that arise from unauthorized access. The login detection system that is integrated with the ProcessMaker PeTIK information system can be an additional extension in preventing unauthorized access incidents. The login log is automatically generated by the information system and the login detection system works by reading the login log data periodically. By using the Gaussian Naive Bayes (GNB) algorithm, the login detection system is capable of real-time classification and training. Based on the results of the confusion matrixcalculation in the offline learning scenario, the accuracy value is 93%
| Item Type: | Thesis (Diploma) |
|---|---|
| Uncontrolled Keywords: | unauthorized access, deteksi login, processmaker, gaussian naive bayes unauthorized access, login detection, processmaker, gaussian naive bayes |
| Subjects: | Skripsi Bidang Keilmuan > Teknik Informatika |
| Divisions: | Fakultas Telematika Energi > S1 Teknik Informatika |
| Depositing User: | Nurul Hidayati |
| Date Deposited: | 11 Sep 2025 08:47 |
| Last Modified: | 11 Sep 2025 08:47 |
| URI: | https://repository.itpln.ac.id/id/eprint/948 |
